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A new algorithm for simultaneous coordinate relaxation is described. For the deter- 
mination of several extreme eigenvalues and eigenvectors of large, sparse matrices the simul- 
taneous algorithm affords significant advantages in comparison with a coordinate relaxation 
algorithm applied to determine individual eigenvalues and eigenvectors in turn. Results of 
application of the algorithm to test matrices are discussed. 

Relaxation methods have been shown to be very effective for solving certain matrix 
eigenvalue problems [l-3]. Characteristic of these problems are eigenvectors which 
have a few dominant components and many secondary ones. This type of structure 
is encountered when a matrix eigenproblem is generated to solve a physical problem 
by a “basis set” approach and when moreover a few terms of the basis form a good 
approximation to the eigenfunction sought. Although direct methods are most 
effective for the computer solution of eigenproblems where the matrices can be 
contained in the fast memory, other methods must be used when the matrices are too 
large. Direct methods modify the matrix elements, whereas when a matrix is sparse, 
which is a frequent characteristic of a basis set approach, that feature is undesirable. 

In comparison with sequential solution of individual eigenvectors and eigenvalues 
by coordinate relaxation [3], the application of the iterative simultaneous relaxation 
method described here to determine the several most dominant eigenvectors and 
eigenvalues of a matrix can be beneficial in two ways. Because the single vector 
scheme displays slowed convergence when there are degenerate (or near degenerate) 
eigenvalues, it is reasonable to expect that a method which converges instead on 
the subspace containing the multiple roots will not be slowed. Such a procedure is 
the basis of the scheme called “simultaneous iteration”, a multiple-vector generali- 
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zation of the power method which was proposed by F. L. Batter [4]. Second, if the 
matrix is so large that it must be held “out of core”, one can benefit by a reduction 
in the quantity of “I/O”, and consequently a reduction of “wait time” which can 
represent a sizeable portion of the computation charge associated with the problem 
solution. 

Simultaneous vector methods have an advantage when the matrix may have special 
characteristics. In quantum chemistry configuration interaction calculations, in 
which such large, sparse matrices are formed and solved for the few lowest eigenvalues 
and their eigenvectors, the physical situation may cause a matrix to be effectively or 
actually blocked (i.e. no non-zero, off-diagonal elements exist which would connect 
large diagonal blocks of the matrix). This occurs for a molecular system which 
approaches a dissociation limit. At some point the fragments, treated as a single 
system, become independent, first in an effective sense when the off-diagonal block 
elements exist but are very small, and then in actuality, as the elements disappear. 
In this case initial vectors are quite important. The matrix blocking will not allow 
correction of vectors to incorporate components from all blocks unless the original 
vector has such components. As a result, the eigenvectors and eigenvalues obtained 
may be from the wrong matrix block and hence would not correspond to the desired 
solutions. Simultaneous solution for several vectors is likely to introduce the appro- 
priate space in which the correct vectors can be found. 

On the other hand, there are potential disadvantages. The usual algorithms require 
a solution vector in core in addition to an associated work space of about equal size. 
The simultaneous approach therefore puts quite a demand on the memory resource 
because more solution vectors and more work spaces are active. Also, more operations 
are required per iteration, so that if convergence is not improved, then there may be 
more total operations. The effects of these disadvantages should be kept in mind 
when constructing a computer program to implement the present algorithm. 

In the following, the relaxation method is described briefly in order to provide the 
background for the present scheme. A variation of it due to Shavitt et al. [3] and known 
as “root-shifting”, which is used to obtain subdominant eigenvalues and eigenvectors 
in sequence, is then introduced. The simultaneous relaxation scheme, which is a mul- 
tiple-vector generalization of the root-shifting scheme, is then described in detail. 
Thereafter follow the results of tests run with the basic algorithm. 

THE METHOD OF COORDINATE RELAXATION FOR AN EXTREME EIGENVALUE 

The problem is to find h and x, an extreme eigenvalue and eigenvector, given the 
matrix A, where 

Ax = Xx. (1) 

In the relaxation method, the best current estimate of x is replaced by itself plus some 
multiple of another unit vector U, i.e. 

x+-x+ Q!u. (2) 
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The relaxation parameter 01 is described below. 
Solution of (1) for a dominant eigenvalue is equivalent to extremizing the Rayleigh 

quotient 
p(x) = (x=Ax)/(x*x). (3) 

If u is a coordinate vector, u = ei , (e& = & (i,j = 1,2,..., n), one easily obtains 
[3] the quadratic equation 

with 
aa + bol + c = 0 (4) 

a = (Aiixi - cj6J(xTx) 

b = Aii - p(x) 

c = $bi - p(x) xi 
(5) 

and where 

q$ = aiTx = eiTAx. (6) 

Stable solution of the quadratic in (4) to determine cy for each coordinate direction 
in turn (i = 1, 2,..., n) is the process called “optimal” coordinate relaxation (CR). 
As the eigenvector is neared, a simple linear approximation to the solution of (4), 
which is equivalent to the Nesbet algorithm [l], provides adequate improvement [2]. 
However, if the initial guess for x is not reasonable, too early introduction of such 
an approximation may be deleterious to the convergence. The variation of CR in 
which 01 is taken to be a fixed multiple of the solution of (4) is called “over-relaxation” 
[5, 61. Choice of an optimal overrelaxation factor is likely to be strongly problem 
dependent. 

An adequate initial guess for x is the coordinate vector corresponding to the 
extreme diagonal element of A. To choose the sign of the radical in the solution of (4), 
one must only be sure that the value of p(x) tends to the appropriate extreme (mini- 
mum or maximum) and convergence is thereby guaranteed. A better initial guess for 
x is obtained by extracting a submatrix of A corresponding to several of the most 
extreme diagonal elements and computing its lowest eigenvector. If x is not close to 
a coordinate vector, this choice will be substantially better. 

The basic CR algorithm is summarized as follows: 

initialize: determine x; compute xTAx, x=x, p(x) 
test for convergence: if satisfied, then stop, else 

begin the row iteration: i = 1, 2,..., n 
obtain the ith row of A 
determine 01. 
x +- x + aei 
update xTAx, x=x, p(x) 

end the row iteration 
return to the convergence test. 
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An important feature of relaxation schemes, as first described by Nesbet [1], is that 
certain quantities can be updated rather than recomputed. Note also that it is not 
necessary to iterate the row index in any particular order. The optimal order is 
probably that one dictated by the sequence of successively decreasing values of 01, 
but for matrices held out of core utilizing that order generally does not lead to a 
practical algorithm. To compute each 01 is an expensive part of the process, so that 
searching for the largest a would be highly inefficient, considering the possible gain. 
The usual procedure is to process the rows in some predetermined order, that being 
determined largely by the order in which A is stored and accessible. 

COORDINATE RELAXATION WITH ROOT-SHIFTING FOR NEAR-EXTREME EIGENVALUES 
AND THEIR VECTORS 

To obtain the (k + 1) - st lowest (or highest) eigenvalue and its eigenvector by 
this algorithm one must have obtained the k eigenvectors corresponding to the k 
eigenvalues which are lower (or higher, respectively). The matrix is then modified 
so that all of the latter eigenvalues are shifted to a value which makes them less 
extreme, so that the desired one, the (k + 1) - st, is left as the lowest (or highest) 
eigenvalue of the modified matrix [3]. The equation is 

(7) 

where M is the diagonal matrix of order k, 

i&j = &j(X, - q), (i,j = 1, 2 ,..., k) (8) 

and X, is the n x k matrix containing the k eigenvectors of length n which correspond 
to the eigenvalues h, , X, ,..., & . The scalars (TV are the desired new eigenvalues of the 
modified matrix A(“+l) which correspond to the same eigenvectors, and are chosen 
so that they are definitely higher (or lower) than the one which is to be found. Note 
that a useful bound for the position of hk+, in the spectrum of A is available as 
p(xk+l), determined from the initial vector x~+~ , orthogonalized to x1 ... xk . Note 
also that Afk+l) is n x IZ, it has the same eigenvectors as A, and the eigenvalue corre- 
sponding to xi is either cri (for i < k) or hi (for i > k). (A common variant of this 
spectral shift is known as deflation: gi = 0, i = 1, 2,..., k. The suitability of this 
latter choice in connection with CR rests upon the position of zero in the spectrum 
of A.) 

Effective and efficient implementations of CR and CR with “root-shifting” (CR/RS) 
have been described by Shavitt et al. [3]. The key to the computational success of the 
CR/RS algorithm is the fact that the matrix Atk+l) is not constructed explicitly. That 
process would destroy the advantage associated with the sparseness of A, in addition 
to its being a computationally tedious process. Equation (7) may be used to derive 
the equations which are analogous to Eqs. (3-6). The quantities Aiffl’, +i”+” and 
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p(“+l)(x) are related to those in Eqs. (5-6) by the addition of a second term which 
derives from the second term in Eq. (7). This new term is simple as long as k is small, 
say of the order of ten or less. The quantities xrx, xrAx, and p(x) are most effectively 
obtained by updating. The necessary equations are given by Shavitt ef al. [3]. 

SIMULTANEOUS COORDINATE RELAXATION 

The generalization of coordinate relaxation for the simultaneous determination 
of a few (p) eigenvectors, X, = (x1 , x2 ,,.., x,), and eigenvalues is based on a CR/RS 
procedure. In order to obtain the correction for the (k + 1) st vector (k + 1 < p) 
one can proceed as if Xk were known and use the same equations as are used to 
obtain xk+, . However, in the prescribed algorithm, the group of vectors Y, which are 
known at any given moment are non-orthogonal, i.e. 

YpTYD E Q # I 

The space subtended by Y, may be expressed in terms of an orthogonal set of vectors 
X, by the relation 

x, = Y,C (10) 

and it follows that 

CCT = Q-l. (11) 

The vectors are not orthogonal, and furthermore X, is not even a collection of eigen- 
vectors in general. Therefore it is necessary to consider what the effect will be on the 
matrix shift given by Eq. (7) and (8) which require knowledge of the eigenvectors. 

The vectors Yk are approximations to the first k eigenvectors with Rayleigh 
quotients p( vi). They span a k-dimensional subspace (k-space) of the entire n-dimen- 
sional space. The generalization of Eq. (7) necessarily consists of modifying A such 
that the eigenvalues of the entire k-space are shifted so that the Rayleight quotient 
p( y,,,) is left in the extreme position. To effect this, A4 in (7) is limited to the form 

M = --a,+,I (12) 

where the scalar (Tk+1 is chosen appropriately (aide infra). This important choice 
permits the following simplification of Eq. (7): 

A’“+l’ = A + uk+JkxkT (13) 

(Note that this equation is invariant to an orthogonal transformation among the 
orthogonal vectors which comprise xk). Unfortunately, at any given moment during 
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the eigenvector determination, only Y, is available, so that the working equation 
becomes 

A’“+l’ = A + ukfl Y,Q-lYkT (14) 

upon substitution of (10) and (11). It would not be practical to compute Q-l to deter- 
mine the relaxation parameters; it does not appear possible to update Q-l simply 
either. Therefore, it would seem that to approximate Q-l is the only viable alternative. 
The two approximations which have been used in this work are: 

Q-l cz I (1% 

and 

Q-l ~21-- Q (16) 

The first approximation derives from the fact that at the start of each iteration one 
normally begins with orthogonal vectors so that Q = I. The second approximation 
comprises the first terms in the binomial expansion of (I + 0)-l where Q = I + A. 
In practice, as demonstrated by the results involving certain test matrices, there 
appeared to be a negligible difference in the eigenvector convergence rates between 
these alternatives. The second approximation is expected to be a bit more generally 
useful, i.e., applicable to a larger class of matrix eigenproblems, and correspondingly 
represents an implementation which is a bit more expensive. Whether or not the 
more complicated approximation is necessary is probably problem dependent. 

Equation (4) is solved to provide the vector update in each coordinate direction, 
with Eqs. (5) and (6) defining the coefficients. The quantities 

and 

with 
p(k+l)(Yk+l> = P’““‘(Yk+lY(YKlYk+l) 

are substituted for Aid , c$~ , and p(x). Equations (17) are a consequence of substitution 
of (14) for A in the definitions of the latter quantities. The matrices P and Q are easily 
updated:using 
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and 

where i is the current coordinate direction. 
The shift parameter u~+~ , as in the CR/RS procedure, must be chosen so as to shift 

the first k eigenvalues of A beyond the (k + 1) - st by an amount sufficient so that 
in A(“-’ l), the shifted eigenvalues do not lie between the new first and second most 
extreme eigenvalues. Too large a shift can degrade the precision of the elements of 
Ack+l), and so it is desirable to shift by an amount just sufficient to satisfy the former 
requirement. An effective program will update the shift parameters during the course 
of the iterations as the energy spacings become known. Knowledge of the energy 
spacings may also be used to provide the initial shift parameters. Otherwise a con- 
venient initial choice for olc+l which has been employed in the test runs is 

*k+l = 3 MYl,+d - PWI * ( 2k; 3 ). 

The form of this choice derives from an assumption of approximately equal spacing 
of eigenvalues between X,,, and h, plus a factor of 2/3 to take care of significant 
deviations. 

As mentioned above, during the eigenvalue determination the vectors Y, are not 
orthogonal. Although it is possible to provide for this in the equations for the deter- 
mination of the relaxation parameters (vide supra), it is desirable to have the vectors 
orthogonal and also to have the best Rayleigh quotients corresponding to the currently 
known A subspace, YP*A Y, . These desires are easily satisfied by solving thep-dimen- 
sional generalized eigenvalue problem 

PC = QCA (20) 

with 

P = YaTAYg (21) 

and Q as given in Eq. (9). Then, by Eq. (lo), the set of orthogonal vectors X, is easily 
produced from Y, . Moreover, the diagonal matrix /l contains thep Rayleigh 
quotients which correspond to the vectors in X, . 

Equation (20) may be solved at any time which is convenient, or when it is necessary 
so that solution of the other relaxation equations will be effective. (This could be 
determined by monitoring the growth of the elements of the matrix d.) In practice 
it is convenient to carry out this substep at the end of each major iteration. The amount 
of machine time necessary for correcting the vectors in this way is of the order np2, 
which represents the matrix multiplication of Eq. (10). Solution of Eq. (20) is negligible 
for the case where n > p. Since a step of the order np2 cannot be considered negligible 
with respect to solving the rest of the relaxation equations, the question of just how 
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often one should carry out this process is of considerable interest. Test results are 
given below which show how the frequency of the generalized eigenproblem solution 
affects the convergence of this iterative scheme. 

THE SCR ALGORITHM 

The complete iterative algorithm consists of “major” and “minor” cycles. In a 
major cycle all of the coordinate directions, i = 1,2,..., n, are treated in some order. 
A minor cycle consists of changing each of the vectors y1 , yz ,..., y3) , in that order, 
for the ith coordinate. The change in Yk+l is determined by use of (4), where 
yk = (h > Y2 9.a.) &), viz. only the current vectors corresponding to the more extreme 
eigenvalues are used to form A(“+‘). It is clear that the equations used to obtain 
changes for-y,@ = 0) are just the ordinary CR equations which employ A(l) = A 
and do not require vectors other than y1 = x1 . Because of this, the most extreme 
eigenvector will converge at least as quickly as it would in an equivalent nonsimul- 
taneous CR scheme. With regard to comparison with a nonsimultaneous version of 
CR, the equations solved to obtain 01~ , 01~ ,..., 01~ in the ith minor iteration all involve 
only the ith row of A by virtue of (6). Therefore, when a row of A is brought into 
the work area, a quantity of computing of the order of p times as many operations 
is carried out before another row is needed. This is a significant advantage of the 
present method; it is seen that the overall input of A is decreased by a factor equal 
to the number of vectors which are iterated simultaneously. This is, of course, 
assuming that the number of row iterations times the number of vectors iterated 
simultaneously is not greater than the total number of row iterations required in the 
CR/RS procedure; in fact it is likely to be much less as the results below demonstrate. 

The algorithm is summarized in a free form as follows: 

initialize: determine X, ; compute P, Q, pj (j = 1, 2,...,p) 
test for convergence: if satisfied, then stop, else 

begin the row iteration: i = 1,2,..., n 
obtain the ith row of A 
compute u,~x, j = 1, 2,...,p 
begin the column iteration: j = 1, 2,..., p 

Xj +- Xj + aei 
update P, Q, pi 

end the column iteration 
end the row iteration 
solve: PC = QCd 
x, + x,c 
update P +- (1, Q t I, pj = (ljj (j = 1, 2 ,..., p) 

return to the convergence test 
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Note that the inner products of the rows of A and the p vectors xi are computed 
outside of the column iteration loop. Ostensibly there is no difference in the amount 
of computing necessary if the inner products were computed inside the loop, but a 
careful simultaneous organization can minimize the movement of data to and from 
the registers. 

In order to effectively compare the present method with others it is useful to sum- 
marize the operation counts for the dominant computations. Following the usual 
practice, the quantities given represent the numbers of multiplications per major 
iteration. The dominant term (normally) represents the inner products and is given 
by n2p d(A) where d(A) is the density of non-zero elements in A. Updating of P and Q 
within the row iteration is represented by about 2np2 and the determination of the 
cy’s is jhp where p is a constant representing the operations to find the square root. 
Following the row iterations, terms are necessary to represent the generalized 
eigenproblem and the associated vector changes and updates. Replacing X, by X,C 
requires np2 multiplications, while solution of the eigenproblem requires no more than 
about 2p3. The total operational cost of an iteration of SCR is: 

n”P 44 + 2np2 + &J +fp2(n + 2p) (22) 

The group of terms multiplied byf, a frequency factor, are those associated with the 
generalized eigenproblem. Since the np2 term is possibly non-negligible if d(A) is very 
small, it may be worthwhile to employ a frequency smaller than unity if there is 
not a large effect on the convergence rate. The effect has been observed empirically 
for the limited tests described below. Conclusions regarding the frequency are given. 

As described prior to the algorithm, compared to the CR/RS procedure, the total 
amount of input operations, consisting essentially of those necessary to have access 
to the rows of A, may be reduced substantially. The amount of computer memory 
required for the basic algorithm is largely np, the space to store X, . If matrix sym- 
metry is used, according to the method of Shavitt [2], an additional memory area 
of np words is required to maintain the column sums U, = (ul , u2 ,..., u,); when 
X, is replaced by X,C, the column sums are replaced in the same way: U, c U,C. 
This requires an additional fnp” multiplications. 

RESULTS 

The tests described here show very well the strength of this algorithm in comparison 
with the non-simultaneous version of root-shifted coordinate relaxation. All results 
described were carred out on two matrices of dimension N = 50. As regards the use 
of a small dimension for testing, it is found that convergence rate cannot be tied 
directly to matrix dimension but it is more a question of matrix conditioning. Enlarge- 
ment of the matrices described below in a straightforward way produced new matrices 
for which the convergence was not significantly slower. Enlargement does change the 
conditioning of the matrix. 
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The first test matrix employed is referred to as the Nesbet matrix after the author 
who first proposed it as being representative of a general configuration interaction 
matrix [l]. The Nesbet matrix has off-diagonal elements which are unity and diagonal 
elements which form the sequence of positive odd numbers (i.e. I, 3, 5,..., 2N + 1). 
A second matrix, the “modified Nesbet” matrix, is identical except for replacement 
of a few of the smallest diagonal elements. For the present tests, the diagonal element 
values of 3, 5, 7, and 9 were replaced by 1.1, 1.2, 1.3, and 1.4. The set of lowest eigen- 
values are closer together than those which are found for the Nesbet matrix itself. 
The lowest eigenvalues of these two matrices are displayed in Table I for reference 
purposes. 

TABLE I 

Lowest Eigenvalues of Test Matrices 

Matrix 

Nesbet Modified Nesbet 

.29627999 .03360804 

2.33793249 .14325149 

4.36505893 .25197477 

6.38629380 .36234267 

8.40428470 2.34942119 

10.42021692 10.34995782 

12.43473245 12.39437281 

14.44822251 14.42087465 

Initial vectors to form approximations to the eigenvectors were obtained in all 
cases by extracting a portion of the matrix corresponding to the ten smallest diagonal 
elements. The full ten by ten submatrix was then fully diagonalized by a standard 
eigenvalue method. The resulting eigenvectors were then distributed into the arrays 
for the large vectors and the elements corresponding to rows other than the ten were 
set to zero. The quantity ten is somewhat of an arbitrary choice, whereas in general 
this procedure to obtain the necessary starting vectors is a good one. One should 
always extract initial vectors by using a submatrix whose dimension is larger than the 
number of vectors being iterated in the SCR (or any other) procedure. 

The convergence of eigenvectors is monitored by computing the residual for each 
major iteration. The residual for the kth vector, Rk , is defined to be 

Rk = R(Xl,> = 11 rkil (23) 

where 
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with 

/I Xk 11 = (XkTX$12. (25) 

The quantity RI, is invariant with respect to the normalization of xk . As xk approaches 
an eigenvector corresponding to the eigenvalue X, , each component or rk approaches 
zero. (In practice, residuals were computed using the current Rayleigh quotients to 
approximate the eigenvalues. Since eigenvalues converge faster than the eigenvectors 
there is assumed to be no visible effect on the general values of RI; .) 

Several experiments were made to observe the convergence properties of the SCR 
algorithm. Each was performed on both the Nesbet and modified-Nesbet matrices. 
The experiments include: (A) varying the dimension (p) of the SCR vector subspace, 
(I3) a comparison of optimal CR/RS with SCR, and (C) changing the frequency (f) 
of the generalized eigenproblem substep. The results of these experiments are described 
in the following sections. 

Convergence Versus SCR Subspace 

By design, the convergence of a vector to an eigenvector by the SCR algorithm 
should be improved if its vector subspace converges to a subspace which also contains 
the eigenvectors whose eigenvalues are adjacent to that one which is sought. The 
SCR procedure obtains the eigensolutions which correspond to an extreme of the 
spectrum and so the adjacency property is assured. To observe the change in con- 

Iteration 
FIG. 1. SCR convergence of the lowest eigenvector of the Nesbet matrix: ~ p = I, 

--- p = 3, . ..p = 5. 
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vergence rate it is sufficient to fix upon a given eigensolution and increase the subspace 
size (p); the added vectors converge to some less extreme eigenvectors. In Figs. 1 
and 2 the convergence of the residual (on a logarithmic scale) is plotted versus the 
major iteration number for the lowest eigenvector of the Nesbet and modified-Nesbet 
matrices respectively. In general it is observed that convergence is better when the 
subspace is larger. The reason for the diminished convergence rates seen in Fig. 2 
is the nature of the modified-Nesbet matrix. The extreme eigenvalues are more closely 
spaced and the corresponding eigenvectors do not have a single, clearly-dominant 
component. Convergence is best when the subspace contains all vectors which will 
converge to eigenvectors whose eigenvalues are “close” (in the units of this particular 
matrix) to the one (or ones) being sought. Heuristically, the convergence rate here 
might be viewed as similar in character to that of the method of simultaneous iteration. 
For that method it has been shown that the rate is proportional to the ratio of the 

0 2 4 6 8 10 12 14 16 

Iteration 
FIG. 2. SCR convergence of the lowest eigenvector of the modified Nesbet matrix: - p = 1, 

---p = 3, . . . p = 5. 

absolute value of the eigenvalue sought and the nearest absolute eigenvalue not 
obtained by the simultaneous iteration process. It is seen that when using the SCR 
method there will be no diminished convergence rate if the chosen subspace is large 
enough so that all eigensolutions which are close to those which are desired are 
included. In Fig. 2, the cases p = 1, 3, and 5 are a clear demonstration of that effect. 

Optimal CRIRS Versus SCR 

Figures 3 and 4 show a comparison of basic optimal root-shifted coordinate 
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0 2 4 6 8 10 12 14 16 

Iteration 

FIG. 3. Optimal and simultaneous CR convergence of the third lowest eigenvector of the Nesbet 
matrix: - Optimal CR, - - - SCR (p = 3), ... SCR (p = 5). 

6 8 10 

Iteration 
12 14 16 

FIG. 4. Optimal and simultaneous CR convergence of the third lowest eigenvector of the modified 
Nesbet matrix: __ Optimal CR, - - - SCR (p = 3), ... SCR (p = 5). 

sS1/32/3-9 
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relaxation with the present simultaneous coordinate relaxation for the Nesbet and 
modified-Nesbet matrices respectively. In this case the convergence of the residual 
for the third eigenvector is plotted versus major iteration number. For the optimal 
CR/RS method, highly accurate first and second eigenvectors were obtained for the 
root-shifting process. In Fig. 3 no major change in the convergence rates is observed; 
convergence is rapid. 

In Fig. 4 the diminished convergence rate characteristic of close eigenvalues is 
observed again. Convergence of the optimal CR/RS method is likewise affected as 
was expected for the SCR method with p = 3. There is no way to modify the CR/RS 
method to correct the deficiency which leads to the diminished convergence. However, 
if such diminshed convergence is observed when using the SCR method, the dimension 
of the subspace (p) may be increased as necessary so that improved convergence is 
obtained. 

The Generalized Eigenproblem Substep 

To demonstrate the effect of changing the frequency of applying the generalized 
eigenproblem substep, plots were made which show the convergence of the second 
eigenvector residual when a group of three vectors (p = 3) are iterated in the SCR 
procedure. Figures 5 and 6 show this effect for the Nesbet and modified Nesbet 
matrices respectively. In Fig. 5 it is clear that the higher the frequency is, the better 
is the convergence. The gain in convergence speed between a frequency of 1 and 112 

0 -1 k. - '; - _ 

. 0 -2 

-3 ~ 

\.\.. 
‘.> 

. . 
;, 

0 ‘<::[,- . . . 

-4 
\\ 0 “+ z‘;, 

FIG. 5. SCR convergence of the second eigenvector of the Nesbet matrix where the frequency 
of applying the generalized eigenproblem substep is changed: -f= 1,---f= l/2, .**f= l/4. 
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is not so large for this case, whereas a frequency of l/4 leads to an undesirable slowing. 
For the modified Nesbet matrix (Fig. 6) the situation is one of slowed convergence 
because the iteration subspace is small (p = 3). Higher frequencies of application 
of the substep do show improved convergence but the rates for all of the frequencies 
shown are virtually unchanged. Other tests which cannot be documented here in 
detail show that higher frequency of application of the substep improves convergence. 

0 2 4 6 8 10 12 14 16 

Iteration 

FIG. 6. SCR convergence of the second eigenvector of the modified Nesbet matrix where the 
frequency of applying the generalized eigenproblem substep is changed: - f = 1, - - -f = l/Z, 
- f = l/4. 

This is almost certainly due to having better current vectors and consequentIy better 
Rayleigh quotients (after the substep) to use for the following major iteration. It 
is recommended that if it is worthwhile in terms of total computation time, i.e. when 
the density of the matrix is small (d(A) N N), then a frequency of l/2 should be used 
to make the algorithm more effective. A good program would test the density and 
modify the frequency factor as necessary. 

COMPARISON WITH OTHER METHODS 

In addition to the optimal relaxation methods of Shavitt, et al. [3] another method, 
that due to Davidson [7], is in wide use for solving the large, sparse matrix eigenvalue 
problems generated in quantum chemical configuration interaction calculations. 
That method has the considerable advantage of not requiring the matrix to be 
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accessible by rows because it utilizes only Krylov-like vectors. It solves for eigenvalues 
and eigenvectors one at a time and the algorithm is designed and organized for a 
computer environment consisting of a relatively small central memory and essentially 
no charge for the large amount of I/O processing required. The present algorithm 
is designed to be run on a computer system for which I/O charges are a considerable 
fraction of the total expanse and the central memory is not a limiting factor. The 
two methods are complementary and from all indications are quite comparable in 
their use of central processor time. It is expected that neither algorithm will con- 
sistently win out over the other in terms of the total number of matrix vector products, 
but that each will perform best on some particular type of matrix. Only as more 
detailed experience with both methods is accumulated will the nature of any specific 
problem dependence become well-defined. 

A generalization of Davidson’s expansion method due to B. Liu [8] has also 
been described. That algorithm is a simultaneous-vector version which is organized 
so that Z/O processing is more efficient. It improves the convergence properties of 
the single vector algorithm [7] and also retains the advantage of not requiring an 
ordered matrix. 

SUMMARY 

An algorithm is proposed for a scheme of simultaneous coordinate relaxation. A 
variant of root-shifting coordinate relaxation, this procedure instead consists of 
iterating several vectors at the same time, instead of one at a time. For many matrix 
eigenvalue problems for which coordinate relaxation is a viable procedure, the present 
algorithm will be more effective than previous implementations of coordinate 
relaxation. Total central processor operations should be decreased due to significantly 
improved convergence, and there should be less non-arithmetic overhead charged 
for peripheral operations because there is more work to be done with the external 
information each time it is brought into central memory. 
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